This could be interesting

Suppliers to the steel tycoon Sanjeev Gupta’s rapidly growing empire have warned they are struggling to get credit insurance and are owed substantial sums.

Five companies that supply goods and services to parts of the Gupta Family Group (GFG) Alliance’s British operations told The Sunday Times they were struggling to secure payment from the steel, commodities and energy conglomerate.

He’s been spending a fortune in borrowed money buying up marginal metals assets. Credit insurers refusing to insure is the first sign that it’s not working.

Easy enough to do

A MARRIED couple from Shropshire were “groomed” into supplying parts for Iran’s nuclear programme, a court has heard.

Paul Attwater, 65, and Iris Attwater, 66, smuggled prohibited aircraft parts from their company Pairs Aviation to Alexander George, 76, in Malaysia who supplied Iranian aviation firms.

Concluding that the couple had been “very, very naive”, Judge Michael Grieve QC yesterday handed the couple suspended sentences after Mr Attwater insisted he had no idea the parts he was exporting had a military application.

What might have a military application – “dual use” items – can have a very wide definition. I know this very well indeed.

Way back when it was Iraq, not Iran, that was the concern. There’s a specific alloy that is used only in Soviet style nuclear plants. Western use a different alloy, each is only used in nuclear. We had a nice little business buying the Soviet stuff as scrap – usual destination was aluminium alloys for boy racer car wheels. All entirely legal and kosher.

However, if we’d sold the tubes, as tubes and so not as scrap, to people who then put them into the Iraqi nuclear program (can’t recall if there ever was one but at the time all thought that….) then that was a possible 20 year sentence.

To the point that there was a stash of such tubes in Cyprus which we made repeated attempts to buy as scrap, at the scrap price. Never got anywhere as it appears that this was, even if a real stash, a temptation being monitored, to put it lightly, by security types to see who would buy as tubes and try to ship to Iraq. I’ve seen at least one trial reported where people did try to buy as tubes and ship.

Have also dealt with radiation hardened chips for rockets and satellites. If they went into Soyuz to go to the space station then that’s fine. If they got diverted to military use then potential 20 years jug time again.

That is, exactly the same item can be entirely legal or horribly not so dependent upon who is the buyer. And no, you don’t get to claim ignorance of the end user. Strict liability applies here, if the bad guys get it then you’re guilty. The sentence might mitigate, the jury might, but not liability.

It’s an interesting area of business. Ahem.

Science being another thing The Guardian doesn’t understand

A newly identified group of materials could help recharge batteries faster, raising the possibility of smartphones that charge fully in minutes and accelerating the adoption of major clean technologies like electric cars and solar energy, say researchers.

The speed at which a battery can be charged depends partly upon the rate at which positively charged particles, called lithium ions, can move towards a negatively charged electrode where they are then stored. A limiting factor in making “super” batteries that charge rapidly is the speed at which these lithium ions migrate, usually through ceramic materials.

There are many different battery technologies, all of which do involve ions*. Most of which do not involve lithium. Thus lithium ions – despite being part of one battery technology – are not common to all battery technologies.

Now, researchers at the University of Cambridge have identified a group of materials called niobium tungsten oxides through which lithium ions can move at astonishingly high rates, meaning much faster charging batteries.

Well, yes, that is interesting.

Another advantage of these alternative materials is that they are cheap and straightforward to make. “These oxides are easy to make and don’t require additional chemicals or solvents,” said Griffith.

That’s interestingly wrong. A major source of Nb being that coltan which produces the Ta for mobile phone capacitors. You know, all that blood minerals stuff all over again? Yes, there are other sources but still. And it’s not cheap. The Ti (note, the oxide, not the metal) is hundreds of $ per tonne, yup, that’s cheap. We can divert the stuff we use in white paint if we desire. But the Nb? Definitely dollars per pound, perhaps tens of $ per lb. Not exactly what we do call cheap.

And if we’re to get it from Ta containing minerals (not an absolute necessity) we’ve got significant processing pollution (using hydrofluoric acid is not for the faint of heart and yes, we do have to) and again significant radioactive residue (there’s always Th in them thar hills).

Oh, and reprocessing Nb and Ti mixtures isn’t easy. OK, my experience is with the metals but still….

*OK, possible to argue here but good enough.

Ah, yes, I have mixed Ti and W, haven’t I? Sigh, still, this was worth what you paid for it then.

Sorry, this amuses

Russia’s FSB security services raided a top space research centre Friday as part of an investigation into staff alleged to have passed secret information on Moscow’s hypersonic missile programme to the West.

Some 20 years back work on the US hypersonic missile was done in Moscow. I know, I organised it.

OK, it was minor enough, producing hafnium carbide for the lining of a scramjet engine but still…..

There’s an interesting point to this

The UK’s Serious Fraud Office has taken the unusual step of issuing an arrest warrant for the boss of a Kazakhstan-based mining company.

The SFO said that Benedikt Sobotka, chief executive of Eurasian Resources Group (ERG), failed to turn up for questioning in London last month, prompting it to take the “rare but necessary” action of issuing a warrant.

ERG is the successor company to ENRC, the miner that was listed on the London Stock Exchange between 2007 and 2013, before returning to private hands following a string of corruption allegations and boardroom battles over “Soviet”-style corporate governance.

So, let us say that Kazakh mining is corrupt. Just as a postulate you understand. Those who successfully invest there should make good profits then, yes? As good profits would only be normal profits, risk adjusted.

As compared to the normal story that making good mining profits in a corrupt place is evidence of ripping the government off.

Now replace Kazakh with DRC or Tanzanian. For that second argument is being made there, isn’t it?

No, Daily Mail, just no

He’s got metal! Man puts his BARE HAND straight through fiery molten ore and is left unscathed


Is this skill or madness? In this remarkable footage a foundry worker can be seen putting his hand straight through boiling hot molten metal.

That’s better. Metal, whether molten or not, and ore, are different things.

A useful analogy would be that the bloke eating a sandwich is eating flour. Well, yes,-ish. The bread is made from flour. Metal is made from ore. But it’s still not true that bread is flour, nor metal ore.

On the scandium business

World’s a small place, eh?

Piece of research, major breakthrough in solid state batteries.

Hmm, well, yes, major breakthroughs and all that. we’ve 98 of those to each product that actually gets made, on’t w?

But this one uses scandium to ad to the magnesium. Hmm, OK.

And the fun bit? Run by a bloke at Bath university. So, the odds that a major new Sc use come from the same town of perhaps 150,000 people as the world’s (used to be) major scandium trader?

Well, as we know, the odds are in fact 1. But what would you have predicted they would be? Without, obviously, any thought of it being me tearing around U Bath insisting people find some use for the stuff.

There’s a very simple answer to this

The London Metal Exchange is investigating whether cobalt mined by children is being traded in London after members raised concerns about a Chinese supplier.

The exchange is also surveying members to ask how they will guarantee “responsible sourcing”, which it says is part of a “broader push” that it was pursuing independently.

Amnesty International investigators have traced cobalt from small independent mines that use child labour in the Democratic Republic of Congo into electronic goods made by famous brands, via Chinese trading companies.

OK. No doubt that it happens as well. The question being, well, what do we do about it?

One answer is nothing.

Another is that we push out the blood minerals legislation to cobalt. That would be a very bad idea indeed. The system designed by the idiots currently costs 100 times what we were told it would.

So, is there a better system?

The LME said in an email to its members that it “would expect that any specific concerns will be addressed as part of our existing efforts”. A spokeswoman said: “We have strict guidelines and criteria for brands [producers] wishing to list their products on the LME. Any evidence of sub-standard practices that fall short of our requirements would be investigated by the LME and action would be taken.

Yes, there is. The LME doesn’t just trade a specific metal. The producer has to meet certain standards. And they really do go check the consistency and so on. Further, being and LME “brand” is something that is valuable. So, incorporate the industry smelter controls into the LME standard (the industry is, with those blood minerals, actually rather good at checking the origin of ore etc for the covered materials) and we’re done. We’ve got economics on our side. People using the child produced material will get a lower price. Users who are concerned about child labour can buy an LME brand knowing that they’re not eploiting.

We’re done aren’t we?

A fun example of why this economic planning is so damn hard

Palladium, a silvery metal used in catalytic converters for petrol cars, has become one of the star commodities of the year, hitting $1,000 an ounce for the first time since 2001.

The metal, mined primarily in South Africa, Zimbabwe and Russia, has risen 48pc this year, making it the best performing precious metal.

Palladium has added $70 an ounce in the last week alone, and rose 2pc in Monday morning trade in London to break the $1,000 mark.

Palladium’s strong run is linked to surging sales of petrol cars globally, in part because consumers are turning their backs on diesel vehicles.

A slew of negative publicity around diesel pollution, combined with wavering support from governments that had previously encouraged motorists to buy diesel, and the emissions data scandal that engulfed Volkswagen, has resulted in the fuel falling out of favour.

It’s not entirely cut and dried but Pt tends to be used in diesel catalysts, Pd in petrol. So, if the new car fleet is now to swing, in Europe at least, from diesel to petrol, which version of the wise and omniscient planner is going to delve down enough layers in the supply chain to tell the miners to adjust? Crack on with really optimising that extraction process for the Pd not the Pt (you do tend to be getting both from the same mineral flow)?

And another level, out into the scrap recycling chain. Catalysts are indeed collected and processed for their scrap. We want a change in prices at the collection end, to make sure that more attention is paid to those formerly less valuable petrol ones. The refiners of the catalyst material also need to be optimising their process for Pd not Pt recovery (the catalysts are processed together, for there are many mixed types as well). And from memory, although I’d not want to swear to it, the scrap feed back into the industry is somewhere between large and a majority of supply.

So let us imagine that planner, some Level III in the bowels of the Ministry of Metals. Then compare with markets that stimulate the lust for the gilt and pelf of profits, that near immediate, by comparison at least, dissemination of that information out through the economy.

Even to the silicon chip makers. Certain types will use Pd, Pt and even at times Nb to do something well beyond my ken. Each solve the problem but with varying success, the choice dependent upon two things, whether the problem really, really, needs to be solved perfectly or whether changing prices make any one of the three good enough. Without the price mechanism how does that information get to the chip designers and specifiers, that we need more Pd over here, not in chips?

Planning’s hard which is why we let markets take the strain.

Isn’t this fun?

CENTENNIAL, Colo., Oct. 05, 2017 (GLOBE NEWSWIRE) — A new analysis by a specialty metals expert finds that scandium-contained aluminum alloys can deliver in the range of $9 million in net present value savings to airline operators for every mid-body airliner because of the metal’s ability to lightweight jets, reduce or eliminate the use of rivets, and reduce fuel consumption.

Not quite word for word but it is what I did write for a potential scandium miner some 13 years ago.

The difference here being that this guys has to say that the aircraft would still make money with Sc2O3 at $3,500 a kg. Which is 3.5 times the current price. And he’s predicting a price rise as production moves from 10 tonnes a year to 400 tonnes a year.

Umm, yes, well, if you say so.

The Lithium Bubble

It’s really pretty obvious to me that we’re in a bubble concerning investments in lithium supplies. I’ve seen one project get funded just recently where I know, absolutely, that the technology they’re using is not in fact viable. It works, but it’s not economic. They are relying upon coproduction of other metals to make up the numbers and that’s a risky thing in mining.

Oh, sure, if you’re going for copper then you’ll take account of the gold, maybe the molybdenum credits, but they should be extra spice, not what pushes you over the line. Not that this is a law, rather just a rule of thumb.

However, bubbles o mean that interesting things get financed:

Claims that Cornwall is sitting on a multibillion-pound lithium bonanza are due to be tested after a start-up ­project that plans to drill for the metal raised £1m from a trio of experienced mining investors.

Cornish Lithium aims to extract the resource, which is in increasing ­demand for batteries, from hot underground salt water. Its new investors include Norwegian financier Peter Smedvig, founder of Smedvig Capital, whose net worth has been estimated at more than £900m.

I have absolutely no idea whether this will work, obviously. But it strikes me as being something which logically could.

Lithium “deposits” tend to be disperse. Another one I know of, there’s mountains of rock, in which there is zinnwaldite, that being 1.3% Li. So, you dig up the rock, crush it, get the zinnwaldite out, then process that. Sure, it can be done. That’s proven. Getting the rock out and the zinnwaldite out of the rock, is expensive.

There are other areas of the world where those mountains of granite have been worn down by erosion and the Li is now sitting in vast plains of salts. Much easier, which is why we get much current Li from such salt plains. There are also areas of the world where hot water has been circulating through rocks and so there are brines with it in. The rest of world production comes from this.

So, hunt for more brines underneath the right sort of granite mountains – which Cornwall is – and you’ve a good chance there. Granite with tin, tungsten in it is likely to have Li, and those Cornish rocks do.

The reason I know all of this is because the same structure should also contain Sc, or at least can. Unfortunately the hydroxide of Sc isn’t soluble in water meaning that you don’t get Sc concentrations in the brines. Sadly.

As I say, don’t know if Cornish Li will work although we do know it’s there in the slurry pits of China Clay mining. But it is a logical place to go looking, that’s for sure.

This would be a bit of a bargain

The Mountain Pass rare earths mine, located about 50 miles south of Las Vegas, was owned by Molycorp, a US natural resources group that filed for bankruptcy in 2015.

The mine is now due to be sold at auction on Wednesday, and Mr Clarke’s ERP Strategic Minerals has teamed up with Swiss private equity firm Pala Investments and Australian rare earths exploration group Peak Resources to offer $1.2m.

I would expect that $1.2 million to be a misprint though.

There is scandium in that thar tailings pile…..part of their frantic thrashing around before bankruptcy was to discuss it with me.

That’s aluminium scandium that is

Ghosts of the USSR: Eerie photographs show Soviet-era space shuttles left to rust in an abandoned desert hangar in Kazakhstan

That’s what it was developed for. Nasa developed aluminium lithium largely for use in the Shuttle. Soviets Al Sc. Which is, actually, the better alloy for the purpose. If, of course, you can get the scandium, which the Soviets could because they didn’t measure the costs of getting it properly.

True story – we were discussing with Nasa making some scandium aluminide* for them. It’s absolutely the best possible combination of light and very highly temperature resistant. Doesn’t even start to deform until well over 1,400 oC.

So, why not test making heat resistant tiles for shuttles from it? Which is what was going to happen. We’d make a bit of it, a few tens of kg, they would then play. That was the arrangement on the Friday, Monday or Tuesday they’d come back with a payment method.

On Saturday Columbia came down in pieces as a result of failure of the heat resistance system.

Absolutely no more was ever said about scandium aluminide.

*The convention is that aluminium scandium has a small dose of Sc. Maybe 2% in the master alloy, 0.1 or 0.2% in the final alloy you actually use. Dcandium aluminide would be perhaps 30% scandium. Quite lovely, lovely, stuff but alarmingly expensive.

Fun stuff

The Queen is among a clutch of landowners set to share a £3.8bn windfall from the largest mine dug in Britain. Dozens of small farmers in North Yorkshire could become multimillionaires thanks to a gigantic deposit of fertiliser a mile below the moors.

Sirius Minerals lifted the lid last week on the riches that will be unlocked for local people and estate owners by its mine. It broke ground on the project in North York Moors national park this year.

The company aims to tap a 70-metre deep seam of polyhalite, a mineral-rich form of potash. The £2.3bn mine is expected to reach peak production in the mid-2020s.

Sirius, which moved from the junior AIM market to the main board last week, said it would hand out royalty cheques of £65m a year. Under current projections, the payments will total £3.8bn over the lifetime of the project. The national park authority is set to receive £772m.

Minerals belong to the landowner. Except for gold, silver, fossil fuels, which belong to the Crown.

Just think how much easier fracking would be if the landowners got the royalty cheques…..

A delightful little metals point

British scientists exploring an underwater mountain in the Atlantic Ocean have discovered a treasure trove of rare minerals.
Their investigation of a seamount more than 500km (300 miles) from the Canary Islands has revealed a crust of “astonishingly rich” rock.
Samples brought back to the surface contain the scarce substance tellurium in concentrations 50,000 times higher than in deposits on land.
Tellurium is used in a type of advanced solar panel, so the discovery raises a difficult question about whether the push for renewable energy may encourage mining of the seabed.

That’s super, isn’t it?

Dr Bram Murton, the leader of the expedition, told the BBC that he had been expecting to find abundant minerals on the seamount but not in such concentrations.
“These crusts are astonishingly rich and that’s what makes these rocks so incredibly special and valuable from a resource perspective.”


He says he is not advocating deep-sea mining, which has yet to start anywhere in the world and is likely to be highly controversial because of the damage it could cause to the marine environment.
But Dr Murton does want his team’s discovery, part of a major research project called MarineE-Tech, to trigger a debate about where vital resources should come from.
“If we need green energy supplies, then we need the raw materials to make the devices that produce the energy so, yes, the raw materials have to come from somewhere.
“We either dig them up from the ground and make a very large hole or dig them from the seabed and make a comparatively smaller hole.
“It’s a dilemma for society – nothing we do comes without a cost.”


Hmm, Te crustal concentration is thought to be 0.001 to 0.005 ppm. 50,000 times that is 50 to 250 ppm. Last I looked Te was $13 a lb or so. Could be anywhere now, that was a few years back.

And we tend not to mine stuff which is 250 ppm for something worth $13 a lb. The processing is too expensive.

Which is why we take the copper sludges from the production of anode and cathode sheet and send them off to a plant in the Philippines. Because they’re 0.5% to 2 %, or 5,000 ppm to 20,000 ppm, Te.

And having checked the price again ($11 to $22 a lb over the year) there’s no real evidence of any great shortage from that source. Especially since it’s only one form of solar cells which uses Te…..

Won’t happen, not a chance

Sir Richard Branson has raised the prospect of planes being made entirely from the so-called wonder material graphene within 10 years, as the airline industry battles a 50pc increase in fuel in the last 12 months, sparking a desperate need for ever lighter fleets.

The Virgin Atlantic president, who founded the airline in 1984, described the super-lightweight material as a ‘breakthrough technology’, which he said could help revolutionise the airline industry and transform its cost base.

It’s wonderful stuff, no doubt about it. But it’ll not be making airplanes in a decade’s time.

For the simple reason that the testing process for a new airplane alloy is more than 10 years.

From sodding scientists in a peer bloody reviewed paper in Nature for the Lord’s Sake

Our analysis also reveals that the incentives for investment in exploration
are not always aligned with societal needs and constraints. The market
determines investment based on short-term returns rather than long-term
scarcity planning.


The mining, resource extraction, industries have the longest planning horizons of any organisation upon the planet. You start drilling holes in the ground now to check something out and you’re thinking about what’ll be happening 50 years into the future as you do so. Absolutely no one plans like this other than this industry. Governments certainly don’t….

Ah, yes, they are being as stupid as I thought they were going to be:

However, none of the current international
agencies has a mandate to plan, oversee or realize efficient and
effective exploitation of mineral resources. Even though there is considerable
fatigue with too many international treaties, as noted by major
resource powers such as China37, we propose that a linkage between the
International Resource Panel (Box 1) and the Intergovernmental Forum
on Mining, Minerals, Metals and Sustainable Development could use
existing treaty mechanisms for more effective resource planning. The
recently established United Nations Environment Assembly38 could play a
convening role to help ensure that ecological constraints are duly incorporated
into effective planning.

We’re going to put the UN in charge of mineral extraction to make it more efficient. Err, yes, that’ll work, won’t it?

2. Monitor impacts of mineral production and consumption. There is an
urgent need to establish a system for tracking mineral use along the entire
value chain, from source to end of life, perhaps based on the ‘fingerprinting’
developed by the German Geological Survey for tantalum39,40

Idiots, damn fool idiots. Yes, I do know those German guys and bloody good work they’ve done too. But their tracking only lasts until you first refine the metal. It’s absolutely useless, cannot in any manner work at all, after that first refining.

Such a system could also incorporate a global chain-of-custody programme,
similar to that of the food industry. Furthermore, there is a
need to promote domestic production and consumer cognizance of
mineral use, incorporating a notion of ‘metal miles’; that is, reduction
of the environmental cost of transport through increased consumption
of local products.

We’re going to have a global plan for minerals extraction so as to make sure that it’s all efficient. So that people then use only local minerals for local people? These folks are insane.

And they’re fools too:

Extraction processes should
be improved. Typical copper grades are less than 1% of the total mass and
the recovery rate of this small amount should be optimized.

Yep, every miner right around the world is just copacetic about his extraction rates. No one ever works to try to improve the percentage of the valuable stuff he extracts. The entire industry just ignores the most obvious method of profit enhancement. Yup, really, they do. They spend fortunes digging vast holes in the ground, erecting huge factories to process the dirt, and they don’t pay any attention at all to how efficiently they extract the gold from the dirt.

But putting the UN in charge would change all of that, wouldn’t it?

How do these people remember how to breathe?

In addition,
all valuable metals contained in the ore should be recovered rather than
ending up in the tailings dam (for example, indium or germanium in zinc
ores, or gallium in bauxite).

Absurdly twattish. Gallium from bauxite for example. Yep, it’s there. And the world uses perhaps 400 tonnes a year of Ga, about half from scrap (mostly process scrap) recycling. So, maybe 200 tonnes of virgin material (old numbers but still useful). There’s a few thousand tonnes of Ga in the bauxite processed each year. If we start to dump thousands of tonnes into a market that demands hundreds of tonnes what does that do to the price? Yep, it falls. Almost certainly to below the price of extracting the Ga from bauxite.

The reason we don’t do this therefore is that it’s not a valuable material, all that Ga in bauxite.

We recognize that in many cases commodity pricing signals run
contrary to ecological goals. Regulatory mechanisms would be needed
for companies to focus on longer-term resource conservation planning.

Facepalm. Let’s abolish the price system. That always works well.

coordination is needed to ensure that minerals are produced in the most
ecologically and economically efficient way

By abolishing the price system?

Ultimately, international legal mechanisms
may be needed to anticipate and respond to future mineral availability