###
45-45-90 Triangles

To learn the pattern of the side lengths of a 45-45-90 triangle, students complete a gallery walk, a card sort activity starting with using the Pythagorean theorem, and activity to locate if there is an error in a presented problem and if so to identify what the error is.

###
Converting Between Measurement Systems

Given a real-world situation with measurements in either metric/SI or customary units, the student will solve a problem requiring them to convert from one system to the other.

###
Evaluating Methods of Sampling from a Set of Data

Given a problem situation, the student will evaluate a method of sampling to determine the validity of an inference made from the set of data.

###
Approximating the Value of Irrational Numbers

Given problem situations that include pictorial representations of irrational numbers, the student will find the approximate value of the irrational numbers.

###
Expressing Numbers in Scientific Notation

Given problem situations, the student will express numbers in scientific notation.

###
Determining if a Relationship is a Functional Relationship

The student is expected to gather and record data & use data sets to determine functional relationships between quantities.

###
Graphing Dilations, Reflections, and Translations

Given a coordinate plane, the student will graph dilations, reflections, and translations, and use those graphs to solve problems.

###
Graphing and Applying Coordinate Dilations

Given a coordinate plane or coordinate representations of a dilation, the student will graph dilations and use those graphs to solve problems.

###
Developing the Concept of Slope

Given multiple representations of linear functions, the student will develop the concept of slope as a rate of change.

###
Using Multiplication by a Constant Factor

Given problems involving proportional relationships, the student will use multiplication by a constant factor to solve the problems.

###
Generating Different Representations of Relationships

Given problems that include data, the student will generate different representations, such as a table, graph, equation, or verbal description.

###
Predicting, Finding, and Justifying Data from a Table

Given data in table form, the student will use the data table to interpret solutions to problems.

###
Predicting, Finding, and Justifying Data from a Graph

Given data in the form of a graph, the student will use the graph to interpret solutions to problems.

###
Graphing Proportional Relationships

Given a proportional relationship, students will be able to graph a set of data from the relationship and interpret the unit rate as the slope of the line.

###
Mean Absolute Deviation

Given a set of data with no more than 10 data points, students will be able to determine and use the mean absolute deviation to describe the spread of the data.

###
Estimating and Finding Solutions to Problems Involving Similarity and Rates

Given application problems involving similarity and rates, the student will estimate and determine the solutions to the problems.

###
Generating Similar Figures Using Dilations

Given a figure, the student will identify the scale factor used for a dilation, and use a dilation by a scale factor, including enlargements and reductions, to generate similar figures.

###
Evaluating Solutions for Reasonableness

Given problem situations, the student will determine if the solutions are reasonable.

###
Predicting, Finding, and Justifying Solutions to Problems

Given application problems, the student will use appropriate tables, graphs, and algebraic equations to find and justify solutions to problems.

###
Can We Get There?

Students will calculate the rate of change and *y*-intercept from a real-world problem represented in a graph, a table, and/or an equation. They will then display and present their findings to the class.